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ABSTRACT

This paper presents a novel segmentation method for the joint segmentation of individual bones in CT- or
CT/MR- head&neck images. It is based on an articulated atlas for CT images that learned the shape and
appearance of the individual bones along with the articulation between them from annotated training instances.
First, a novel dynamic adaptation strategy for the atlas is presented in order to increase the rate of successful
adaptations. Then, if a corresponding CT image is available the atlas can be enriched with personalized infor-
mation about shape, appearance and size of the individual bones from that image. Using mutual information,
this personalized atlas is adapted to an MR image in order to propagate segmentations.
For evaluation, a head&neck bone atlas created from 15 manually annotated training images was adapted to 58
clinically acquired head&neck CT datasets. Visual inspection showed that the automatic dynamic adaptation
strategy was successful for all bones in 86% of the cases. This is a 22% improvement compared to the traditional
gradient descent based approach. In leave-one-out cross validation manner the average surface distance of the
correctly adapted items was found to be 0.68 mm. In 20 cases corresponding CT/MR image pairs were available
and the atlas could be personalized and adapted to the MR image. This was successful in 19 cases.
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1. INTRODUCTION

The segmentation of individual bones is required for computer aided diagnosis (CAD) and therapy planning
applications. Due to its high contrast, bone can be segmented in CT images with high accuracy. A more
complex problem is the segmentation and annotation of individual bones from CT images (e.g. the individual
vertebrae). Since neighboring bones are in some cases very close to each other and have very similar appearance,
a joint segmentation is required. For MR images, both problems are a lot more challenging due to the lower
contrast. However, if both imaging modalities of the same subject are available, a precise segmentation in the
CT image can be exploited to obtain a segmentation in the corresponding MR image. An example for that is
radiation therapy planning where both imaging modalities may be available, MRI to delineate the tumor and
other soft tissue structures and CT to delineate many high contrast organs at risk and do the dose planning. As
a by-product the correspondences of the bones in both modalities can be used for the skeleton based multi-rigid
registration of both imaging modalities.1

For CT images, the joint segmentation of multiple bones can be achieved using an articulated statistical shape
model (e.g. the spine2) or an articulated atlas (e.g. the entire skeleton of mice3 or the head and the cervical
spine.4 For MR images, fewer solutions exist (e.g. for the segmentation of the knee5 and the detection of the
spine6). Whereas in Ref. 3 and 5 the joints are explicitly modeled, Ref. 2 and 4 learn the articulation from
training instances.
The goal of this work is to enrich the articulated atlas presented Ref. 4 with personalized information from a
previously segmented CT image of the same subject in order to segment individual bones from a corresponding
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Figure 1. Training of the articulated atlas from annotated images for segmentation of bones in CT images. The articulated
atlas consists of shape and appearance of individual bones along with the articulation between them.

MR head&neck image with high accuracy. After a short introduction of the articulated atlas and the presentation
of an advanced articulated atlas adaptation strategy, we describe the necessary steps for the atlas personalization
in order to be able to successfully adapt it to MR images. Finally, the atlas adaptation strategy and the
personalization is evaluated quantitatively on clinical datasets.

2. ARTICULATED ATLAS

2.1 Articulated Atlas Creation

The articulated atlas consists of n atlas items, each representing a different bone (e.g. skull, mandible, vertebra
C3). The shape and appearance of each atlas item as well as the relative spatial location and orientation of all
items (articulation) is learned from m manually labeled training instances that shall cover the possible shape,
appearance, and spatial location space as good as possible.
The shape of an item is represented by a probability map s : D ⊂ R

3 7→ [0, 1] indicating the membership to the
item computed in a coordinate system normalized by translation, rotation and scaling. This coordinate system is
computed by a group wise alignment of the training data masks maximizing the mutual overlap. The probability
map is created by averaging the aligned training data masks.
The appearance of an item is given by the average intensities gi : D 7→ R extracted from the training intensity
images aligned to that normalized coordination system.
Each bone item has those 7 degrees of freedom relative to the atlas coordinate system and thus the articulation of
the entire atlas can uniquely be described with a 7n dimensional vector p. To enable vector space like operations
for the transformations all transformations are expressed by linear combinations of unit transformations (unit
translation, unit rotation, unit scale) using the matrix exponential representation.7 The space of all possible
articulations can be described by applying principal component analysis (PCA) on the training articulation
matrix P = (p1, . . . ,pm), where pj is the articulation vector of the specific training instance j. An arbitrary
articulation p can then be described with a k ≪ 7n dimensional vector b:

p = p̄+A · b+ r , (1)

where p̄ is the average articulation of all training articulations pj , A is a matrix consisting of the eigenvectors
of the covariance matrix C = 1

m−1
P̄ P̄T , P̄ = (p1 − p̄, . . . ,pm − p̄), and r is the residual vector. The more likely

an articulation p is, the smaller the magnitude of b and r will be.



2.2 Articulated Atlas Adaptation

The atlas is adapted to a CT image by minimizing an energy functional depending on the 6 dimensional vector
x describing a global rigid transformation and the articulation parameter vector p:

E(p,x) = Eexternal(p,x) + αEinternal(p)

=
n∑

i=1

Ei

external(p,x) + αEinternal(p) . (2)

The empirically determined parameter α balances the external and internal energy.
The external energy Eexternal ensures gray value similarity between the test image I : R

3 7→ R and the
transformed trained intensities of the atlas items gi. For a single atlas item it is defined as the weighted mean
squared error:

Ei
external(p,x) =

∑

∀y∈D

(Gσ ⋆ si)(y) [gi(y)− I((Tx ◦ Tpi
)(y))]

2
, (3)

where G is the Gaussian kernel, si the item’s probability map describing the shape, Tx is the atlas transformation
described by external parameters x, and Tpi

is the atlas item transformation described by the item’s internal
parameters pi. The Gaussian smoothing of the item’s probability image ensures that not only gray values within
the model item but also in the neighborhood have an impact on the external energy.
The internal energy Einternal ensures that the atlas is within or at least close to the trained articulation space.
To achieve this, we model the probability density of the articulations by an approximate Gaussian distribution
using the approach of Moghaddam and Pentland.8 The internal energy is defined as

Einternal(p) =
k∑

j=1

b2j (p)

λj

+
m− k − 1
∑m−1

j=k+1 λj

‖r(p)‖2 , (4)

where the λj , λ1 ≥ . . . ≥ λm−1 > 0 are the non-zero eigenvalues of C. The first term is the Mahalanobis distance
in the linear subspace U spanned by the first eigenvectors A, and the second term approximates the Mahalanobis
distance in the subspace complementary to U . The latter term ensures that articulations are not completely
restricted to the linear subspace U , which increases the flexibility of the model.
A gradient descent optimizer first finds the global transformation parameters x and in a second step the artic-
ulation and external parameters p,x jointly. Once the articulated model converged, the segmentations for each
bone item are extracted based on the probability maps and the CT intensities. Please refer to Ref. 4 for details.

3. DYNAMIC ADAPTATION STRATEGY

Due to similar appearance of neighboring items (e.g. vertebra C4 looks very similar to vertebra C5), using a
gradient descent based atlas adaptation strategy4 may move multiple atlas items into the wrong structures in the
CT image. The internal energy may not be able to recover this and thus, one atlas item covers two vertebrae in
the test image or vice versa. To overcome this issue, we propose a dynamic adaptation strategy. The basic idea is
to start the image driven adaptation with a reliable structure (here: the skull) and then exploit relations between
neighboring atlas items. Figure 2 shows the order in which the external energy of atlas items are activated.
This idea is implemented by modifying the external energy given by equation (2):

Eexternal(p,x, t) =

n∑

i=1

wi(t)E
i

external(p,x) , (5)

where t is a parameter describing the progress of the adaptation process and wi(t) ∈ [0, 1] are element weights
depending on the adaptation progress. At the beginning (t = 0), all weights are set to zero except for the most
reliable item (here: the skull) whose weight is set to one. As the gradient descent based adaptation proceeds (t
increases), the partial derivative magnitudes of the energy functional for the parameters of the skull eventually
become smaller. As soon as they fall below a certain threshold, the neighboring atlas items (here: the mandible
and vertebra C1) are activated by setting their weight to one as well. This process continues until all items



Figure 2. Order of item activation. Item gets activated as soon as the predecessor has converged. Inactive items are
dragged along with active items based on learned articulation.

are activated and converged. Items that are not activated at a certain time during the process are driven by
the internal energy only and consequently are dragged along with the activated items according to the trained
articulation space. At the end, equation (5) becomes identical to the external energy described in equation 2
and thus, not the energy functional itself, but only the adaptation strategy has changed.

4. PERSONALIZED ARTICULATED ATLAS

Unfortunately, the articulated atlas cannot directly be used for the segmentation of bones from MR images
because the appearance model (the average intensities) depends on absolute image intensities and high image
contrast of the structures. Based on the CT image of the same subject, the atlas adaptation parameters x⋆,p⋆

to that image and the resulting segmentations of the bones, the articulated atlas is personalized to enable an
adaptation to MR images nonetheless:

• Shape. The probability map representing the shape is replaced by the binary mask given by the CT
segmentation.

• Appearance. The average intensity image representing the appearance is replaced by the intensities from
the CT image.

• External Energy. Instead of computing image intensity similarity, the mutual information (MI) between
the transformed item appearance within a slightly dilated version (≈ 5mm) of the item’s segmentation
and the MR image is computed for the external energy. Note that the MI must be computed for all items
jointly based on a single joint histogram in order to increase statistical relevance compared to independent
computation for each item.

• Adaptation. All components of p representing item scale are extracted from p⋆ and not considered during
the adaptation process. This ensures that the atlas items are effectively rigidly transformed from the CT
to MR image.

Once the personalized atlas is adapted to the MR image, the segmentations from the CT image are propagated.
Figure 3 illustrates this approach.
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Figure 3. Personalization of the articulated atlas using a CT image for segmentation of bones from MR images. Shape
and Appearance is extracted from corresponding CT image. Changes in item size are prohibited. Mutual information is
used to measure similarity between item appearance and target MR image.

5. EXPERIMENTS & RESULTS

For evaluation, an articulated atlas has been created from 15 manually annotated head&neck CT images. It
includes the skull, the mandible, the cervical vertebrae and the upper two thoracic vertebrae. This atlas was
then adapted to 58 further head&neck CT images with i) the traditional gradient descent approach4 and ii) with
the dynamic adaptation strategy. Some of the images had strong imaging artifacts and/or were truncated.
As ground truth segmentation was not available, only qualitative results can be reported. An observer rated the
location and rotation of the adapted atlas items and assigned them into three categories: i) correct alignment
of all items, ii) at least one shifted vertebra, iii) complete misalignment. Table 1 shows the results. A success
rate improvement of approximately 22% confirms the design goal of the dynamic adaptation. The main reasons
for the still unsatisfactory cases are unusual anatomy (e.g. a missing inter-vertebral disk) or an articulation
insufficiently covered by the learned articulation space.
The segmentation accuracy was assessed using leave-one-out cross validation. 14 of the training datasets were
used to create the articulated atlas which was then applied to the remaining dataset. For the correctly adapted
items (86% of all items) the segmentation was compared to ground truth segmentation. The average dice
similarity coefficient and the average surface distance was 0.84 and 0.68 mm respectively.
For 20 of the 58 CT images, corresponding T1-weighted MR images with sagittal slices (3−5 mm slice distance)
were available. The personalized articulated atlas was applied to those MR images. Visual inspection of the
adapted atlas showed that in 19 of the 20 cases (95%), all atlas items are located correctly. Thus, even though
adapting the atlas to a different imaging modality based on mutual information is a more difficult problem than
the single modal case for CT images, the personalization of the atlas was able to increase the success rate of the
atlas adaptation. Since the anatomy was assumed to be identical in both images (only the pose of the skeleton
was different in general), the segmentation accuracy on the MRT images was identical to the previously reported
CT case in case of perfect adaptation of the personalized articulated atlas.

Gradient descent Dynamic adaptation
Correct alignment 41(71%) 50(86%)
Shifted vertebra 14(24%) 7(12%)
Misalignment 3(5%) 1(2%)

Table 1. Atlas adaptation quality for different strategies. The adaptation of atlas items to neighboring structures is
significantly reduced by the dynamic adaptation strategy and overall results in a 22% increase of the success rate.



6. CONCLUSION

We used a (personalized) articulated atlas for the joint segmentation of individual bones from CT or CT/MR
images. The contributions are

• a dynamic adaptation strategy for the articulated atlas. Using this strategy, a 86% success rate for
the correct adaptation of all atlas items can be achieved. This is a 22% improvement compared to the
traditional gradient descent based approach.4

• the personalization of the articulated atlas which enables adapting it to MR images if a corresponding
CT image is available. Even though bones have a much lower contrast in MR images, the atlas personal-
ization may achieve sub-voxel segmentation accuracy, because shape information from the CT image with
a typically finer inter-slice resolution is incorporated. In the case of perfect atlas adaptation, the same
segmentation accuracy (0.68 mm average surface distance) as in the CT case is achieved by design.

The subsequent adaptation of the articulated atlas first to a CT image and then the personalized articulated
atlas to a corresponding MR image enables an interesting application. It enhances the deformable registration
of both images with the multi-rigid approach we presented in Ref. 1. From the adaptations to both images,
a rigid transformation can be computed for each atlas item and based on that, a dense deformation field can
be computed. The particularly interesting aspect of using the articulated atlas is that the articulation is at
all times restricted to the learned articulation space and hence, the resulting registration scheme is subject to
global regularization. This hardly seen property of a deformable registration method ensures globally plausible
deformation fields.
Future work includes rebuilding the articulated atlas with more training instances, include more (possibly de-
formable) structures and extend it to other parts of the body.
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